EMBEDDING SPACES WITH UNCONDITIONAL BASES

BY

WILLIAM J. DAVIS^{*}

ABSTRACT

Every super-reflexive space with an unconditional basis is isomorphic to a complemented subspace of a super-reflexive space with a symmetric basis.

Lindenstrauss [4] proved that if X has an unconditional basis, then X is isomorphic to a complemented subspace of a space Y with symmetric basis. Szankowski [5] extended the result to show that if X is reflexive, Y may be chosen to be reflexive. The purpose of this note is to give a proof of these results which also yields the further extension: if X is uniformly convex (super-reflexive), then Y may be chosen to be uniformly convex (superreflexive). The technique is based on the construction in [1].

Let Φ denote the finitely supported (scalar) sequences, and let $B_{3/2}$ (resp. B_2) denote the unit ball in Φ with the $l_{3/2}$ (resp. l_2) norm. Consider the set $mB_{3/2}$ + (1/m) B_2 in Φ and let $|\cdot|_m$ denote its Minkowski functional. Let W_m be the completion of $\langle \Phi, | \cdot |_{m} \rangle$. If X has monotonely normalized unconditional basis (x_n) , for a sequence m_k , with $m_k \ge 2^{-k}$, let

$$
Z = (\sum W_{m_k})_X = \{(z_k) | z_k \in W_{m_k}, ||(z_k)|| = ||\sum | z_k |_{m_k} x_k||_X < \infty \}
$$

and

$$
Y = \text{diag } Z = \{(z_k) \mid z_k = z \quad \text{for all } k \}.
$$

Since $m_k \ge 2^{-k}$, it is easy to see that $Y \supset \{(x, x, x, \cdots) | x \in l_{3/2}\}\)$. The sequence (x, x, x, \dots) will be denote by \tilde{x} .

Lemma 1 is a consequence of lemma 1 of [1].

LEMMA 1. *The sequence* $(\tilde{\delta}_k)$, where $\delta_k = (\delta_{ki})_{i=1}^{\infty}$, is a monotonely symmetric *basis for Y.*

^t Supported in part by NSF Grant GP43370

Received August 5, 1974

LEMMA *2. If X is reflexive (uniformly convex), then Z (and therefore Y) is reflexive (uniformly convex).*

PROOF. The "reflexive" part of this lemma is immediate. Day proved that if (W_n) is a uniformly uniformly convex sequence of Banach spaces, then $(\Sigma W_n)_x$ is uniformly convex whenever X is uniformly convex with monotonely unconditional basis. It is easy to see that the W_n 's are uniformly uniformly convex. A proof appears in [2].

The next lemma also appears in [2].

LEMMA 3. If X is super-reflexive with unconditional basis (x_n) , then X can be *equivalently renormed to be uniformly convex so that* (x_n) *is monotonely unconditional.*

We now choose a sequence (m_i) and a sequence (k_i) so that, if

$$
K_t = \sum_{j=1}^t k_j
$$
 and $u_t = \left(2 \sum_{i=K_{t-1}+1}^{K_t} \delta_i\right) / k_t^{\gamma/12}$,

then $\bar{u}_i = (u_i, u_i, \dots)$ is a sequence in Y equivalent to the basis (x_i) for X. Once this is accomplished, the main result is proved, since $[\tilde{u}_t]$ is norm one complemented in Y by conditional expectation [3].

We first compute the norm in W_m of $u = \sum_{i=1}^{k} \delta_i$:

$$
|u|_m = \inf \{ \lambda \mid u = u' + u'' , \quad m \parallel u'' \parallel_{l_2}, \frac{1}{m} \parallel u' \parallel_{l_{3/2}} \leq \lambda \}.
$$

Let $u = u' + u''$ be any decomposition of u, and notice first that $\|\Pi_k u'\|_{l_2} \leq \|u'\|_{l_2}$, etc., so that we may as well assume $u' = \sum_{i=1}^{k} \beta_i \delta_i$ (here Π_k denotes the natural projection of Φ onto $[\delta_1, \cdots, \delta_k]$. Further, if P_k is the collection of all permutations of $\{1,\dots,k\}$ and if, for $\rho \in P_k$, $S_{\rho}(u') = \sum \beta_i \delta_{\rho(i)}$, then by symmetry of (d_i) , we also have

$$
\left\|\frac{1}{k!}\sum_{\rho\in P_k}S_{\rho}(u')\right\|\leq\|u'\|
$$

for each of the norms $\|\cdot\|_{l_2}$ and $\|\cdot\|_{3/2}$. Thus, we may assume that $u' = \alpha u$, $u'' =$ βu with $\alpha + \beta = 1$. Since $||u||_{t_{3/2}} = k^{2/3}$ and $||u||_{t_2} = k^{1/2}$, we are now able to conclude that $|u|_m = mk^{2/3}/(m^2 + k^{1/6})$ which, for fixed k, is maximized at $m = k^{1/12}$. There we have $|u|_{k^{1/12}} = \frac{1}{2}k^{7/12}$ (explaining the normalization of u_1 above). For any m , $|u_i|_m \leq m k_i^{-1/12}$, so that, if $m_i^{12} = k_i$ for all l,

$$
\sum_{j=1}^{l-1} |u_i|_{m_j} \leqq \frac{1}{m_l} \sum_{j=1}^{l-1} m_j.
$$

Also, since $|u_t|_m \leq k_1^{1/2}/m$, we see that

$$
\sum_{j=1}^{\infty} |u_i|_{m_{i+j}} \leq \sum_{j=1}^{\infty} (m_i/m_{i+j}).
$$

Thus, if (m_i) is a sequence satisfying

$$
\frac{1}{m_i}\sum_{j=1}^{l-1}m_j+m_l\sum_{j=1}^{\infty}m_{l+j}^{-1}<2^{-l-1},
$$

if $k_1 = m_1^{12}$ and if $z_i = (\delta_{ii} u_i)_{i=1}^{\infty}$ in Z, then $||z_i - \bar{u}_i||_z < 2^{-1-1}$ so (z_i) and (\bar{u}_i) are equivalent basis sequences. It is easy to see that (z_i) is equivalent to the basis **(x.). This completes the proof.**

REFERENCES

1. W. J. Davis, T. Figiel, W. B. Johnson and A. Pelczyfiski, *Factoring weakly compact operators,* J. Functional Analysis 17 (1974), 311-327.

2. T. Figiel and W. B. Johnson, *A uniformly convex Banach space which contains no lp,* Compositio Math. 29 (1974), 179-190.

3. J. Lindenstrauss and M. Zippin, *Banach spaces with a unique unconditional basis, J.* Functional Analysis 3 (1969), 115-125.

4. J. Lindenstrauss, A remark on symmetric bases, Israel J. Math. 13 (1972), 317-320.

5. A. Szankowski, *Embedding Banach spaces with unconditional bases into spaces with symmetric bases,* Israel J, Math. 15 (1973), 53-59.

THE OHIO STATE UNIVERSITY COLUMBUS, OHIO 43210 U.S.A.