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E M B E D D I N G  S P A C E S  W I T H  U N C O N D I T I O N A L  

B A S E S  

BY 
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ABSTRACT 

Every super-reflexive space with an unconditional basis is isomorphic to a 

complemented subspace of a super-reflexive space with a symmetric basis. 

Lindenstrauss [4] proved that if X has an unconditional basis, then X is 

isomorphic to a complemented subspace of a space Y with symmetric basis. 

Szankowski [5] extended the result to show that if X is reflexive, Y may be 

chosen to be reflexive. The purpose of this note is to give a proof of these 

results which also yields the further extension: if X is uniformly convex 

(super-reflexive), then Y may be chosen to be uniformly convex (super- 

reflexive). The technique is based on the construction in [1]. 

Let �9 denote the finitely supported (scalar) sequences, and let B3~2 (resp. B2) 

denote the unit ball in �9 with the 13~2 (resp. 12) norm. Consider the set 

mB3~2 + (l /m)B2 in �9 and let I" I,. denote its Minkowski functional. Let W,, be 

the completion of (~,1" I,,)- If X has monotonely normalized unconditional 

basis (x~), for a sequence mk, with mk => 2 -k, let 

z -- (:~ w,,,),, = {r zk ~ w. , ,  II(zk)ll--IlXlz~ I.,xk I1,, < ~} 
and 

Y = d i a g Z = { ( z k ) l z ~ = z  for al lk}.  

Since mk > 2  -k, it is easy to see that Y D{(x ,x ,x , . . ' ) l x  E 13~2}. The sequence 

(x,x,x,  ...) will be denote by ~. 

Lemma 1 is a consequence of iemma 1 of [I]. 

LEMMA 1. The sequence (gk ), where 8k = (~kl)~-,, is a monotonely symmetric 

basis for Y. 
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LEMMA 2. I f  X is reflexive (uniformly convex), then Z (and therefore Y) is 

reflexive (uniformly convex). 

PROOF. The "reflexive" part of this lemma is immediate. Day proved that if 

(W,)  is a uniformly uniformly convex sequence of Banach spaces, then (EW,)x 

is uniformly convex whenever  X is uniformly convex with monotonely 

unconditional basis. It is easy to see that the W, 's  are uniformly uniformly 

convex.  A proof appears in [2]. 

The next lemma also appears in [2]. 

LEMMA 3. I f  X is super-reflexive with unconditional basis (x,), then X can be 

equivalently renormed to be uniformly convex so that (x~) is monotonely 

unconditional. 

We now choose a sequence (m~) and a sequence (kt) so that, if 

K I = ~  kj and ut = 2 8i k~ m, 
.[=I i = K I - t + l  

then t~t = (ut, ut, "-) is a sequence in Y equivalent to the basis (xt) for X. Once 

this is accomplished, the main result is proved, since [~t] is norm one 

complemented in Y by conditional expectation [3]. 

We first compute the norm in W~ o f u  = ~ . ,  8~: 

. . . . .  • A}. Iul~ = i n f { A l u  =u + u ,  mllu II,, m 

Let  u = u '  + u" be any decomposit ion of u, and notice first that Hl-lku'l[,2 --< [[ u'll,2, 

etc., so that we may as well assume u ' =  ~[3A (here II~ denotes the natural 

projection of �9 onto [8~, . . . ,&]).  Further,  if P, is the collection of all 

permutations of {l ,- . - ,  k} and if, for  p E Pk, S~(u') = Efl~8 ~,~, then by symmetry 

of (d~), we also have 

1 ~ S o ( u , )  -<-I[u'll 
P 

for  each of the norms [l" II,= and II" Thus, we may assume that u' = au, u" = 
/3u with a +/3 = 1. Since Ilu lit,,, = k2'~ and IIu lit, = k '~2, we are now able to 

conclude that lu[~ = mk2~3/(m 2+k'~6) which, for fixed k, is maximized at 

m = k ''2. There we have [u Ik,,,2 = �89 ~'2 (explaining the normalization of ut 

above). For  any m, lu, <=mk~ t/'~, so that, if m] 2= k~ for  all l, 

I - I  

i-t r/It ~=l 

Also, since [ut [~ <--_ k ]~'2/m, we see that 
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lu, lm,, 
i~l j - t  

Thus, if (mr) is a sequence satisfying 

__ -, 2-,-i, 1 E rnj + m r  r n t . j <  
rr/t i=t i=t 

if k , - -m~ z and if zt  = ($uuDT=, in Z, then IIz,-  ,llz < 2 ' - '  so (z,) and (t~l) are 

equivalent basis sequences. It is easy to see that (Zl) is equivalent to the basis 

(x.). This completes the proof. 
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